Edició de «Distància»

Anar a la navegació Anar a la busca

Advertencia: No has iniciat sessió. La teua direcció IP serà visible públicament si realises qualsevol edició. Si inicies sessió o crees un conte, les teues edicions s'atribuiran al teu nom d'usuari, junt en atres beneficis.

Pot desfer-se la modificació. Per favor, revisa la comparació més avall per a assegurar-te que es lo que vols fer; llavors deixa els canvis per a la finalisació de la desfeta de l'edició.

Revisió actual El teu text
Llínea 1: Llínea 1:
En [[matemàtiques]], la '''distància''' entre dos punts de l'[[espai euclídeu]] equival a la llongitut del segment de la [[recta]] que els unix, expressat numèricament. En espais més complexos, com els definits en la [[geometria no *euclidiana]], el «camí més curt» entre dos punts és un segment recte en curvatura nomenada [[geodèsica]].
+
 
 +
 
 +
 
 +
En [[matemàtiques]], la '''distància''' entre dos punts del [[espai @euclídeo]] equival a la llongitut del segment de la [[recta]] que els unix, expressat numèricament. En espais més complexos, com els definits en la [[geometria no *euclidiana]], el «camí més curt» entre dos punts és un segment recte en curvatura anomenada [[geodèsica]].
  
 
En [[física]], la distància és una [[magnitut física|magnitut]] [[Escalar (física)|escalar]], que s'expressa en [[unitats de llongitut]].
 
En [[física]], la distància és una [[magnitut física|magnitut]] [[Escalar (física)|escalar]], que s'expressa en [[unitats de llongitut]].
  
 
== Definició formal ==
 
== Definició formal ==
Des d'un punt de vista formal, per a un [[conjunt]] d'elements <math>X</math> es definix '''distància''' o '''mètrica''' com qualsevol [[funció matemàtica]] o aplicació <math>d(a,b)</math> de <math>X \times X</math> en <math>\mathbb{R}</math> que verifique les següents condicions:  
+
Des d'un punt de vista formal, per a un [[conjunt]] d'elements <math>X</math> es definix '''distància''' o '''mètrica''' com qualsevol [[funció matemàtica]] o aplicació <math>d(a,b)</math> de <math>X claves X</math> en <math>mathbb{R}</math> que verifique les següents condicions:  
 +
 
  
 
* No negativitat: <math>d(a,b)\ge 0 \ \forall a,b \in X</math>  
 
* No negativitat: <math>d(a,b)\ge 0 \ \forall a,b \in X</math>  
Llínea 12: Llínea 16:
 
* Si <math>x,y \in X</math> són tals que <math>d(x,y)=0</math>, llavors <math>x=y</math>.
 
* Si <math>x,y \in X</math> són tals que <math>d(x,y)=0</math>, llavors <math>x=y</math>.
  
Si deixem d'exigir que es complixca esta última condició, al concepte resultant se li denomina [[pseudodistància|'''pseudodistància''']] o '''pseudomètrica'''.
 
 
La distància és el concepte fonamental de la Topologia d'Espais Mètrics. Un [[espai mètric]] no és una atra cosa que un parell <math>(X,d)</math>, on <math>X</math> és un conjunt en el que definim una distància <math>d</math>.
 
 
En el cas de que tinguérem un parell <math>(X,d)</math> i <math>d</math> fora una pseudodistància sobre <math>X</math>, llavors diríem que tenim un [[espai pseudomètric]].
 
 
Si <math>(X,d)</math> és un espai mètric i <math>E \subset X</math>, podem restringir <math>d</math> a <math>I</math> de la següent forma:
 
<math>d': E \times E \longrightarrow \mathbb{R}</math> de manera que si <math>x,y \in E</math> llavors <math>d'(x,i)=d(x,i)</math> (és dir, <math>d'=d|_{E \times E}</math>). L'aplicació <math>d'</math> és també una distància sobre <math>d</math>, i com compartix sobre <math>E \times E</math> els mateixos valors que <math>d</math>, es denota també de la mateixa manera, és dir, direm que <math>(I,d)</math> és subespai mètric de <math>(X,d)</math>.
 
 
=== Distància d'un punt a un conjunt ===
 
 
Si <math>(X,d)</math> és un [[espai mètric]], <math>E \subset X</math>, <math>E \ne \varnothing</math> y <math>x \in X</math>, podem definir la distància del punt <math>x</math> al conjunt <math>E</math> de la següent manera:
 
 
:<math>d(x,E):= \inf \{d(x,y): y \in E\}</math>.
 
 
És de destacar les següents tres propietats:
 
 
* En primer lloc, en les condicions donades, sempre existirà eixa distància, puix <math>d</math> té per domini <math>X \times X</math>, aixina que per a qualsevol <math>y \in E</math> existirà un únic valor real positiu <math>d(x,y)</math>. Per la completitut de <math>\mathbb{R}</math> i com l'image de d està acotada inferiorment per 0, queda garantisada l'existència de l'ínfim d'eixe conjunt, açò és, la distància del punt al conjunt.
 
 
* Si <math> x \in E</math> llavors <math>d(x,E)=0</math>.
 
 
* Pot ser que <math>d(x,E)=0</math> pero <math>x \notin E</math>, per eixemple si <math>x</math> és un [[punt d'adheriment]] de <math>E</math>. De fet, la [[Clausura topològica|clausura]] de <math>E</math> es precisament el conjunt dels punts de <math>X</math> que tenen distància 0 a <math>E</math>.
 
 
Els casos de distància d'un punt a una recta o de distància d'un punt a un pla no són més que casos particulars de la distància d'un punt a un conjunt, quan es considera la distància euclidiana.
 
 
=== Distància entre dos conjunts ===
 
 
Si <math>(X,d)</math> es un espai mètric, <math>A \subset X</math> y <math>B \subset X</math>, <math>A \ne \varnothing</math>, <math>B \ne \varnothing</math>, podem definir la distància entre els conjuntos <math>A</math> y <math>B</math> de la següent manera:
 
  
:<math>d(A,B):= \inf \{d(x,y): x \in A, y \in B\}</math>.
 
  
Per la mateixa raó que ans, sempre está definida. Ademés <math>d(A,A)=0</math>, pero pot ocórrer que <math>d(A,B)=0</math> i sno obstant <math>A \ne B</math>. Es més, podem tindre dos conjunts tancats la distància del qual siga 0 i no obstant siguen disjunts, e inclús que tinguen clausura disjuntas.
 
  
Por eixample, el conjunt <math>A:= \{(x,0): x \in \mathbb{R}\}</math> y el conjunt <math>B:= \{(x,e^x): x \in \mathbb{R}\}</math>. Per un costat, <math>A=\operatorname{cl}(A)</math>, <math>B=\operatorname{cl}(B)</math> y <math>A \cap B = \varnothing</math>, y por atro <math>d(A,B)=0</math>.
 
  
La distància entre dos rectes, la distància entre dos plans, etc. no són més que casos particulars de la distància entre dos conjunts quan es considera la distància euclidiana.
 
  
== Vore també ==
 
  
* [[Distància de Mahalanobis]]
 
* [[Método dels quadrants centrats en un punt]]
 
* [[Desplaçament (vector)]]
 
* [[Trayectòria]]
 
* [[Recta real estesa]]
 
* [[Mesura de Lebesgue]]
 
* [[Distància d'un punt a una recta]]
 
* [[Distància relativa entre dos camps escalares]]
 
  
[[Categoria:Matemàtiques]]
 
[[Categoria:Matemàtica elemental]]
 
[[Categoria:Llongitut]]
 
  
  

Per a editar esta pàgina, per favor respon a la pregunta que apareix més avall (més informació):

Cancelar Ajuda d'edició (s'obri en una finestra nova)


Advertència sobre drets d'autor

Totes les contribucions a Proyecte se publiquen baix la Llicència de documentació lliure GNU. Al contribuir, acceptes que atres persones distribuïxquen i modifiquen lliurement les teues aportacions. Si això no és lo que desiges, no poses les teues contribucions ací.

Ademés, al publicar el teu treball nos assegures que estàs llegalment autorisat a dispondre d'eixe text, ya siga perque eres el titular dels drets d'autor o per haver-lo obtingut d'una font baix una llicència compatible o en el domini públic. Recorda que l'immensa majoria del contingut disponible en internet no complix estos requisits; llig Proyecte:Drets d'autor per a més detalls.

¡No utilises sense permís escrits en drets d'autor!

Plantilles usades en esta pàgina: