| Llínea 6: |
Llínea 6: |
| | | | |
| | Un triàngul té tres ànguls interiors, tres parells congruents d'ànguls exteriors.En cada vèrtiç apareixen dos ànguls exteriors congruents tres costats i tres vèrtiços entre atres elements. | | Un triàngul té tres ànguls interiors, tres parells congruents d'ànguls exteriors.En cada vèrtiç apareixen dos ànguls exteriors congruents tres costats i tres vèrtiços entre atres elements. |
| − | Si està contengut en una superfície [[pla (geometria)|plana]] es denomina '''triàngul''', o '''trígono''', un nom menys comú per a este tipo de polígons. Si està contengut en una superfície [[esfera|esfèrica]] es denomina [[triàngul esfèric]]. Representat, en [[cartografia]], sobre la superfície terrestre, es diu '''triàngul geodèsic'''. | + | Si està contingut en una superfície [[pla (geometria)|plana]] es denomina '''triàngul''', o '''trígono''', un nom menys comú per a este tipo de polígons. Si està contingut en una superfície [[esfera|esfèrica]] es denomina [[triàngul esfèric]]. Representat, en [[cartografia]], sobre la superfície terrestre, es diu '''triàngul geodèsic'''. |
| | | | |
| | == Elements == | | == Elements == |
| | [[Archiu:Triangle.Labels.svg|300px|thumb|Triángulo: '''ABC'''. Costats: ''a'', ''b'', ''c''. Ànguls: <math>\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma} \,</math>.]] | | [[Archiu:Triangle.Labels.svg|300px|thumb|Triángulo: '''ABC'''. Costats: ''a'', ''b'', ''c''. Ànguls: <math>\widehat{\alpha}, \widehat{\beta}, \widehat{\gamma} \,</math>.]] |
| | | | |
| − | ===Vèrtiços=== | + | === Vèrtiços === |
| | | | |
| | Un vèrtiç és qualsevol dels tres punts, no colineals al mateix temps, que determinen un triàngul.Tal com els vèrtiços d'un polígon, solen ser denotats per lletres llatines mayúscules: '''''A''''', ''''' B''''', '''''C''''',...''. Si AB +BC = AC no existix triàngul que determinaren A, B, i C. | | Un vèrtiç és qualsevol dels tres punts, no colineals al mateix temps, que determinen un triàngul.Tal com els vèrtiços d'un polígon, solen ser denotats per lletres llatines mayúscules: '''''A''''', ''''' B''''', '''''C''''',...''. Si AB +BC = AC no existix triàngul que determinaren A, B, i C. |
| Llínea 18: |
Llínea 18: |
| | En el cas del triàngul, els vèrtiços poden donar-se en qualsevol orde, perque qualsevol de les 6 maneres possibles ('''''ABC''''', '''''ACB''''', '''''BAC''''', '''''BCA''''', '''''CAB''''', '''''CBA'''''), correspon a un recorregut del seu perímetro. Açò ya no és cert per a polígons en més vèrtiços. | | En el cas del triàngul, els vèrtiços poden donar-se en qualsevol orde, perque qualsevol de les 6 maneres possibles ('''''ABC''''', '''''ACB''''', '''''BAC''''', '''''BCA''''', '''''CAB''''', '''''CBA'''''), correspon a un recorregut del seu perímetro. Açò ya no és cert per a polígons en més vèrtiços. |
| | | | |
| − | ===Costats=== | + | === Costats === |
| | Cada parell de vèrtiços determina un segment, que es coneix com a costat del triàngul. No interessa l'orde dels vèrtiços per a nomenar un costat de modo AB, BA nomenen a un mateix costat. | | Cada parell de vèrtiços determina un segment, que es coneix com a costat del triàngul. No interessa l'orde dels vèrtiços per a nomenar un costat de modo AB, BA nomenen a un mateix costat. |
| | | | |
| Llínea 27: |
Llínea 27: |
| | La suma dels costats d'un triàngul es coneix com a '''perímetro''', denotat per ''p'' o 2''s''; complix l'equació p = 2s = *AB+*BC+CA | | La suma dels costats d'un triàngul es coneix com a '''perímetro''', denotat per ''p'' o 2''s''; complix l'equació p = 2s = *AB+*BC+CA |
| | | | |
| − | ===Ànguls=== | + | === Ànguls === |
| | Cada parell de costats en orige comú el vèrtiç d'un triàngul i que contenen dos d'eixos costats concurrents es diu '''àngul''' del triàngul o -ocasionalment- àngul interior- | | Cada parell de costats en orige comú el vèrtiç d'un triàngul i que contenen dos d'eixos costats concurrents es diu '''àngul''' del triàngul o -ocasionalment- àngul interior- |
| | | | |
| | La notació general per a l'àngul entre dos segments '''''OP''''' i '''''OQ''''' prolongats i que concorren en l'extrem '''''O''''' és <math>\widehat{POQ} .\,</math> | | La notació general per a l'àngul entre dos segments '''''OP''''' i '''''OQ''''' prolongats i que concorren en l'extrem '''''O''''' és <math>\widehat{POQ} .\,</math> |
| − |
| |
| − |
| |
| | | | |
| | == Vore també == | | == Vore també == |
| − |
| |
| | | | |
| | * [[Relacions mètriques en el triàngul]] | | * [[Relacions mètriques en el triàngul]] |
| Llínea 56: |
Llínea 53: |
| | * [[Catet]] | | * [[Catet]] |
| | | | |
| | + | == Enllaços externs == |
| | | | |
| − |
| |
| − |
| |
| − |
| |
| − |
| |
| − |
| |
| − | == Enllaços externs ==
| |
| | [[Categoria:Geometria]] | | [[Categoria:Geometria]] |
| | [[Categoria:Trigonometria]] | | [[Categoria:Trigonometria]] |
| | {{Traduït de|es|Triángulo}} | | {{Traduït de|es|Triángulo}} |