Canvis

658 bytes afegits ,  7 octubre
Llínea 14: Llínea 14:  
Ademés, certs conjunts s'utilisen freqüentment en l'[[Educació matemàtica|ensenyança matemàtica]] (com els conjunts ℕ de números naturals, ℤ de números sancers, ℝ de números reals, etc.). Estos s'utilisen habitualment en definir una [[funció matemàtica]] com una relació d'un conjunt (el domini) a un atre conjunt (el codomini o image).
 
Ademés, certs conjunts s'utilisen freqüentment en l'[[Educació matemàtica|ensenyança matemàtica]] (com els conjunts ℕ de números naturals, ℤ de números sancers, ℝ de números reals, etc.). Estos s'utilisen habitualment en definir una [[funció matemàtica]] com una relació d'un conjunt (el domini) a un atre conjunt (el codomini o image).
   −
<references />
+
== Referències ==
<references />
+
* Kaplansky, Irving (1972), De Prima, Charles (ed.), Set Theory and Metric Spaces, Boston: Allyn and Bacon, p. 4
 +
* Monk, J. Donald (1969), Introduction to Set Theory, McGraw-Hill Book Company, ISBN 978-0-898-74006-6
 +
* Potter, Michael (2004), Set Theory and Its Philosophy: A Critical Introduction, Oxford University Press, ISBN 978-0-191-55643-2
 +
 
 +
== Bibliografia ==
 +
* Ferreirós, Jose (2001), Labyrinth of Thought: A History of Set Theory and Its Role in Modern Mathematics, Berlin: Springer, ISBN 978-3-7643-5749-8
 +
* Johnson, Philip (1972), A History of Set Theory, Prindle, Weber & Schmidt, ISBN 0-87150-154-6
 +
 
 +
== Enllaços externs ==
 +
* [https://en.wikipedia.org/wiki/Set_theory Teoria de conjunts en wikipedia]
    
{{Traduït de|en|Set_theory}}
 
{{Traduït de|en|Set_theory}}
* [https://en.wikipedia.org/wiki/Set_theory]
   
    
 
    
 
[[Categoria:Teoria de conjunts]]
 
[[Categoria:Teoria de conjunts]]
68 268

edicions