Edició de «Física»

Anar a la navegació Anar a la busca

Advertencia: No has iniciat sessió. La teua direcció IP serà visible públicament si realises qualsevol edició. Si inicies sessió o crees un conte, les teues edicions s'atribuiran al teu nom d'usuari, junt en atres beneficis.

Pot desfer-se la modificació. Per favor, revisa la comparació més avall per a assegurar-te que es lo que vols fer; llavors deixa els canvis per a la finalisació de la desfeta de l'edició.

Revisió actual El teu text
Llínea 1: Llínea 1:
 
{{destacat}}
 
{{destacat}}
[[Archiu:Newtons cradle animation smooth.gif|250px|thumb|{{cita|Si he conseguit vore més llunt, ha segut perqué he pujat a coll de jagants.|Sir [[Isaac Newton]]}}]]
+
[[Archiu:Newtons cradle animation smooth.gif|250px|thumb|{{cita|Si he conseguit vore més llunt, ha estat perqué he pujat a coll de jagants.|Sir [[Isaac Newton]]}}]]
  
 
La '''física''' (del [[llatí|lat.]] physica) és una [[ciència]] [[ciències naturals|natural]] que estudia les propietats de l'[[espai]], el [[temps]], la [[matèria]], l'[[energia (física)|energia]] i les seues [[interaccions fonamentals|interaccions]].
 
La '''física''' (del [[llatí|lat.]] physica) és una [[ciència]] [[ciències naturals|natural]] que estudia les propietats de l'[[espai]], el [[temps]], la [[matèria]], l'[[energia (física)|energia]] i les seues [[interaccions fonamentals|interaccions]].
Llínea 14: Llínea 14:
 
[[Archiu:Niels Bohr Albert Einstein by Ehrenfest.jpg|thumb|200px|{{cita|Deu no juga als daus en l'Univers.|[[Albert Einstein]].}}{{cita|Einstein, deixe de dir-li a Deu lo que ha de fer en els seus daus.|[[Niels Bohr]].}}]]
 
[[Archiu:Niels Bohr Albert Einstein by Ehrenfest.jpg|thumb|200px|{{cita|Deu no juga als daus en l'Univers.|[[Albert Einstein]].}}{{cita|Einstein, deixe de dir-li a Deu lo que ha de fer en els seus daus.|[[Niels Bohr]].}}]]
  
Es coneix que la majoria de civilisacions de l'antiguetat varen tractar des d'un principi d'explicar el funcionament del seu entorn, miraven les estreles i pensaven com elles podien regir el seu món. Açò porta a moltes interpretacions de caràcter més filosòfic que físic, no en va en eixos moments la física se la cridava [[filosofia natural]]. Molts filòsofs es troben en el desenroll primigeni de la física, com [[Aristoteles]], [[Tales de Milet]] o [[Demòcrit]], per ser els primers en tractar de buscar algun tipo d'explicació als fenòmens que els rodejaven. A pesar que les teories descriptives de l'univers que varen deixar estes pensadores eren errades, estes varen tindre validea per molt de temps, quasi dos mil anys, en part per l'acceptació de l'[[iglésia catòlica]] de diversos dels seus preceptes com la [[teoria geocèntrica]] o les tesis d'Aristoteles.
+
Es coneix que la majoria de civilisacions de l'antiguetat varen tractar des d'un principi d'explicar el funcionament del seu entorn, miraven les estreles i pensaven com elles podien regir el seu món. Açò porta a moltes interpretacions de caràcter més filosòfic que físic, no en va en eixos moments la física se la cridava [[filosofia natural]]. Molts filòsofs es troben en el desenroll primigeni de la física, com [[Aristoteles]], [[Tales de Milet]] o [[Demòcrit]], per ser els primers en tractar de buscar algun tipo d'explicació als fenòmens que els rodejaven. A pesar que les teories descriptives de l'univers que varen deixar estes pensadores eren errades, estes varen tindre validea per molt de temps, quasi dos mil anys, en part per l'acceptació de la [[iglésia catòlica]] de diversos dels seus preceptes com la [[teoria geocèntrica]] o les tesis d'Aristoteles.
  
Esta etapa denominada [[obscurantisme]] en la ciència acaba quan [[Nicolau Copèrnic]], considerat pare de la [[astronomia]] moderna, en l'any [[1543]] rep la primera còpia del seu ''[[de Revolutionibus Orbium Coelestium]] ''. A pesar que Copèrnic fon el primer a formular teories plausibles, és un atre personage al qual se li considera el pare de la física com la coneixem ara. Un catedràtic de matemàtiques de l'[[Universitat de Pisa]] a finals del [[sigle XVI]] canviaria l'història de la ciència utilisant per primera vegada experiments per a comprovar les seues asseveracions, [[Galileu Galilei]]. En l'invenció del [[telescopi]] i els seus treballs en [[pla inclinat|plans inclinats]], Galileu va utilisar per primera vegada el [[método científic]] i va arribar a conclusions capaces de ser verificades. Als seus treballs se li varen unir grans contribucions per part d'atres [[científic]]s com [[Johannes Kepler]], [[Blaise Pascal]], [[Christian Huygens]].
+
Esta etapa denominada [[obscurantisme]] en la ciència acaba quan [[Nicolau Copèrnic]], considerat pare de la [[astronomia]] moderna, en [[1543]] rep la primera còpia del seu ''[[de Revolutionibus Orbium Coelestium]] ''. A pesar que Copèrnic fon el primer a formular teories plausibles, és un atre personage al qual se li considera el pare de la física com la coneixem ara. Un catedràtic de matemàtiques de l'[[Universitat de Pisa]] a finals del [[sigle XVI]] canviaria l'història de la ciència utilisant per primera vegada experiments per a comprovar les seues asseveracions, [[Galileu Galilei]]. En l'invenció del [[telescopi]] i els seus treballs en [[pla inclinat|plans inclinats]], Galileu va utilisar per primera vegada el [[método científic]] i va arribar a conclusions capaces de ser verificades. Als seus treballs se li varen unir grans contribucions per part d'atres [[científic]]s com [[Johannes Kepler]], [[Blaise Pascal]], [[Christian Huygens]].
  
 
Posteriorment, en el [[sigle XVII]], un científic anglés reunix les idees de [[Galileu]] i [[Kepler]] en un sol treball, unifica les idees del moviment celest i les dels moviments en la terra en lo que ell nomenà [[gravetat]]. En [[1687]], [[Isaac Newton]] en la seua obra ''[[Philosophiae Naturalis Principia Mathematica]] '' va formular els tres [[principi]]s del [[moviment (física)|moviment]] i una quarta [[Llei de la gravitació universal]] que varen transformar per complet el món físic, tots els fenòmens podien ser vistos d'una manera mecànica.
 
Posteriorment, en el [[sigle XVII]], un científic anglés reunix les idees de [[Galileu]] i [[Kepler]] en un sol treball, unifica les idees del moviment celest i les dels moviments en la terra en lo que ell nomenà [[gravetat]]. En [[1687]], [[Isaac Newton]] en la seua obra ''[[Philosophiae Naturalis Principia Mathematica]] '' va formular els tres [[principi]]s del [[moviment (física)|moviment]] i una quarta [[Llei de la gravitació universal]] que varen transformar per complet el món físic, tots els fenòmens podien ser vistos d'una manera mecànica.
Llínea 24: Llínea 24:
 
És en el [[sigle XIX]] a on es produïxen avanços fonamentals en la [[electricitat]] i el [[magnetisme]] principalment de la mà de [[Charles-Augustin de Coulomb]], [[Luigi Galvani]], [[Michael Faraday]] i [[Georg Simon Ohm]] que varen culminar en el treball de [[James Clerk Maxwell]] de [[1855]] que va conseguir la unificació de les dos branques en lo nomenat [[electromagnetisme]]. Ademés es produïxen els primers descobriments sobre [[radioactivitat]] i el descobriment del [[electró]] per part de [[Joseph John Thomson]] en [[1897]].
 
És en el [[sigle XIX]] a on es produïxen avanços fonamentals en la [[electricitat]] i el [[magnetisme]] principalment de la mà de [[Charles-Augustin de Coulomb]], [[Luigi Galvani]], [[Michael Faraday]] i [[Georg Simon Ohm]] que varen culminar en el treball de [[James Clerk Maxwell]] de [[1855]] que va conseguir la unificació de les dos branques en lo nomenat [[electromagnetisme]]. Ademés es produïxen els primers descobriments sobre [[radioactivitat]] i el descobriment del [[electró]] per part de [[Joseph John Thomson]] en [[1897]].
  
Durant el [[sigle XX]], la Física es va desenrollar plenament. En [[1904]] es va propondre el primer model del [[àtom]]. En l'any [[1905]], Einstein va formular la [[Relativitat especial|Teoria de la Relativitat especial]], la qual coincidix en les [[lleis de Newton]] quan els fenòmens es desenrollen a velocitats chicotetes comparades en la velocitat de la llum. En l'any [[1915]] va estendre la Teoria de la Relativitat especial, formulant la [[relativitat general|Teoria de la Relativitat general]], la qual substituïx a la Llei de gravitació de Newton i la comprén en els casos de masses chicotetes. [[Max Planck]], [[Albert Einstein]], [[Niels Bohr]] i atres, varen desenrollar la [[Teoria quàntica]], a fi d'explicar resultats experimentals anómals sobre la radiació dels cossos. En l'any [[1911]], [[Ernest Rutherford]] va deduir l'existència d'un nucli atòmic carregat positivament, a partir d'experiències de dispersió de partícules. En l'any [[1925]] [[Werner Heisenberg]], i en [[1926]] [[Erwin Schrödinger]] i [[Paul Adrien Maurice Dirac]], varen formular la [[Mecànica quàntica]], la qual comprén les teories quàntiques precedents i suministra les ferramentes teòriques per a la [[Física de la matèria condensada]].
+
Durant el [[Sigle XX]], la Física es va desenrollar plenament. En [[1904]] es va propondre el primer model del [[àtom]]. En l'any [[1905]], Einstein va formular la [[Relativitat especial|Teoria de la Relativitat especial]], la qual coincidix en les [[lleis de Newton]] quan els fenòmens es desenrollen a velocitats chicotetes comparades en la velocitat de la llum. En [[1915]] va estendre la Teoria de la Relativitat especial, formulant la [[relativitat general|Teoria de la Relativitat general]], la qual substituïx a la Llei de gravitació de Newton i la comprén en els casos de masses chicotetes. [[Max Planck]], [[Albert Einstein]], [[Niels Bohr]] i atres, varen desenrollar la [[Teoria quàntica]], a fi d'explicar resultats experimentals anómals sobre la radiació dels cossos. En l'any [[1911]], [[Ernest Rutherford]] va deduir l'existència d'un nucli atòmic carregat positivament, a partir d'experiències de dispersió de partícules. En [[1925]] [[Werner Heisenberg]], i en [[1926]] [[Erwin Schrödinger]] i [[Paul Adrien Maurice Dirac]], varen formular la [[Mecànica quàntica]], la qual comprén les teories quàntiques precedents i suministra les ferramentes teòriques per a la [[Física de la matèria condensada]].
  
 
Posteriorment es va formular la [[Teoria quàntica de camps]], per a estendre la mecànica quàntica de manera consistent en la Teoria de la Relativitat especial, conseguint la seua forma moderna a finals dels [[40]], gràcies al treball de [[Richard Feynman]], [[Julian Schwinger]], [[Tomonaga]] i [[Freeman Dyson]], els que varen formular la [[Electrodinàmica cuántica|teoría de l'electrodinàmica quàntica]]. Aixina mateix, esta teoria va suministrar les bases per al desenroll de la [[física de partícules]]. En l'any [[1954]], [[Chen Ning Yang]] i [[Robert Mills (físic)|Robert Mills]] varen desenrollar les bases del [[model estàndart]]. Este model es va completar en els [[anys 1970]], i en ell fon possible predir les propietats de partícules no observades prèviament, pero que varen ser descobertes successivament, sent l'última d'elles el [[quark top]].
 
Posteriorment es va formular la [[Teoria quàntica de camps]], per a estendre la mecànica quàntica de manera consistent en la Teoria de la Relativitat especial, conseguint la seua forma moderna a finals dels [[40]], gràcies al treball de [[Richard Feynman]], [[Julian Schwinger]], [[Tomonaga]] i [[Freeman Dyson]], els que varen formular la [[Electrodinàmica cuántica|teoría de l'electrodinàmica quàntica]]. Aixina mateix, esta teoria va suministrar les bases per al desenroll de la [[física de partícules]]. En l'any [[1954]], [[Chen Ning Yang]] i [[Robert Mills (físic)|Robert Mills]] varen desenrollar les bases del [[model estàndart]]. Este model es va completar en els [[anys 1970]], i en ell fon possible predir les propietats de partícules no observades prèviament, pero que varen ser descobertes successivament, sent l'última d'elles el [[quark top]].
Llínea 62: Llínea 62:
  
 
=== Relativitat ===
 
=== Relativitat ===
[[File:Cassini-science-br.jpg|thumb|right|Dibuix artístic sobre una prova realisada en alta precisió per la sonda [[Cassini-Huygens|Cassini]] a l'enviar senyals a la terra i al descriure la trayectòria predita.]]
+
[[Image:Cassini-science-br.jpg|thumb|right|Dibuix artístic sobre una prova realisada en alta precisió per la sonda [[Cassini-Huygens|Cassini]] a l'enviar senyals a la terra i al descriure la trayectòria predita.]]
 
{{AP|Teoria de la Relatividad}}
 
{{AP|Teoria de la Relatividad}}
 
La relativitat és la teoria formulada principalment per [[Albert Einstein]] a principis del [[sigle XX]], es dividix en dos cossos d'investigació: la [[relativitat especial]] i la [[relativitat general]].
 
La relativitat és la teoria formulada principalment per [[Albert Einstein]] a principis del [[sigle XX]], es dividix en dos cossos d'investigació: la [[relativitat especial]] i la [[relativitat general]].
Llínea 68: Llínea 68:
 
En la teoria de la relativitat especial, Einstein, [[Hendrik Lorentz|Lorentz]], [[Hermann Minkowski|Minkowski]] entre atres, varen unificar els conceptes de [[espai]] i [[temps]], en un ramat tetradimensional a qué se li va denominar [[espai-temps]]. La relativitat especial fon una teoria revolucionària per a la seua época, en la que el temps absolut de Newton quede relegat i conceptes com la invariància en la [[velocitat de la llum]], la [[dilatació del temps]], la [[contracció de la llongitut]] i la [[equivalència entre massa i energia]] varen ser introduïts. Ademés en les formulacions de la relativitat especial, les lleis de la física són invariants en tots els [[sistema de referència inercial|sistemes de referència inercials]], com a conseqüència matemàtica es troba com a llímit superior de velocitat a la llum i s'elimina la [[causalitat (física)|causalitat]] deterministe que tenia la física fins llavors. Cal indicar que les lleis del moviment de Newton és un cas particular d'esta teoria on la [[massa]] al viajar a velocitats molt chicotetes no experimenta cap variació en llongitut ni es transforma en energia i el temps se li pot considerar absolut.
 
En la teoria de la relativitat especial, Einstein, [[Hendrik Lorentz|Lorentz]], [[Hermann Minkowski|Minkowski]] entre atres, varen unificar els conceptes de [[espai]] i [[temps]], en un ramat tetradimensional a qué se li va denominar [[espai-temps]]. La relativitat especial fon una teoria revolucionària per a la seua época, en la que el temps absolut de Newton quede relegat i conceptes com la invariància en la [[velocitat de la llum]], la [[dilatació del temps]], la [[contracció de la llongitut]] i la [[equivalència entre massa i energia]] varen ser introduïts. Ademés en les formulacions de la relativitat especial, les lleis de la física són invariants en tots els [[sistema de referència inercial|sistemes de referència inercials]], com a conseqüència matemàtica es troba com a llímit superior de velocitat a la llum i s'elimina la [[causalitat (física)|causalitat]] deterministe que tenia la física fins llavors. Cal indicar que les lleis del moviment de Newton és un cas particular d'esta teoria on la [[massa]] al viajar a velocitats molt chicotetes no experimenta cap variació en llongitut ni es transforma en energia i el temps se li pot considerar absolut.
  
D'atra banda, la [[relativitat general]] estudia la [[interacció gravitatòria]] com una deformació en la geometria del [[espai-temps]]. En esta teoria s'introduïxen els conceptes de la [[curvatura de l'espai-temps]] com la causa de la interacció gravitatòria, el [[principi d'equivalència]] que diu que per a tots els observadors locals inercials les lleis de la relativitat especial són invariants i la introducció del moviment d'un partícula per llínees [[geodèsica]]s. La relativitat general no és l'única teoria que descriu a l'atracció gravitatòria pero és la que més senyes rellevants comprovables ha trobat. Anteriorment a la interacció gravitatòria li la descrivia matemàticament per mig d'una distribució de masses, pero en esta teoria no sols la massa percep esta interacció si no també la [[energia]] per mig de la curvatura de l'espai-temps i és per això que es necessita un atre llenguage matemàtic per a poder descriure-la, el [[càlcul tensorial]]. Molts fenòmens, com la curvatura de la llum per acció de la gravetat i la desviació en la [[òrbita]] de [[Mercuri (planeta)|Mercuri]] són perfectament predites per esta formulació. La relativitat general també va obrir un atre camp d'investigació en la física, conegut com [[cosmologia]] i és àmpliament utilisada en la [[astrofísica]].<ref>http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/078/htm/relativ.htm</ref>
+
D'atra banda, la [[relativitat general]] estudia la [[interacció gravitatòria]] com una deformació en la geometria del [[espai-temps]]. En esta teoria s'introduïxen els conceptes de la [[curvatura de l'espai-temps]] com la causa de la interacció gravitatòria, el [[principi d'equivalència]] que diu que per a tots els observadors locals inercials les lleis de la relativitat especial són invariants i la introducció del moviment d'un partícula per llínees [[geodèsica]]s. La relativitat general no és l'única teoria que descriu a l'atracció gravitatòria pero és la que mes senyes rellevants comprovables ha trobat. Anteriorment a la interacció gravitatòria li la descrivia matemàticament per mig d'una distribució de masses, pero en esta teoria no sols la massa percep esta interacció si no també la [[energia]] per mig de la curvatura de l'espai-temps i és per això que es necessita un atre llenguage matemàtic per a poder descriure-la, el [[càlcul tensorial]]. Molts fenòmens, com la curvatura de la llum per acció de la gravetat i la desviació en la [[òrbita]] de [[Mercuri (planeta)|Mercuri]] són perfectament predites per esta formulació. La relativitat general també va obrir un atre camp d'investigació en la física, conegut com [[cosmologia]] i és àmpliament utilisada en la [[astrofísica]].<ref>http://bibliotecadigital.ilce.edu.mx/sites/ciencia/volumen2/ciencia3/078/htm/relativ.htm</ref>
  
 
=== Termodinàmica i mecànica estadística ===
 
=== Termodinàmica i mecànica estadística ===
Llínea 84: Llínea 84:
 
La mecànica quàntica és la branca de la física que tracta els [[àtom|sistemes atòmics]] i subatòmics i les seues interaccions en la radiació electromagnètica, en térmens de cantitats [[observable]]s. Es basa en l'observació que totes les formes de [[energia]] se lliberen en unitats discretes o paquets nomenats ''[[quant]]s''. Sorprenentment, la [[teoria quàntica]] a soles permet normalment càlculs [[provabilitat|provabilístics]] o [[estadística|estadístics]] de les característiques observades de les [[partícula elemental|partícules elementals]], entesos en térmens de funcions d'ona. La [[equació de Schrödinger]] eixercix el paper en la mecànica quàntica que les [[lleis de Newton]] i la [[conservació de l'energia]] fan en la mecànica clàssica. És a dir, la predicció del comportament futur d'un sistema dinàmic, i és una equació d'ona en térmens d'una [[funció d'ona]] la que preveu analíticament la provabilitat precisa dels acontenyiments o resultats.
 
La mecànica quàntica és la branca de la física que tracta els [[àtom|sistemes atòmics]] i subatòmics i les seues interaccions en la radiació electromagnètica, en térmens de cantitats [[observable]]s. Es basa en l'observació que totes les formes de [[energia]] se lliberen en unitats discretes o paquets nomenats ''[[quant]]s''. Sorprenentment, la [[teoria quàntica]] a soles permet normalment càlculs [[provabilitat|provabilístics]] o [[estadística|estadístics]] de les característiques observades de les [[partícula elemental|partícules elementals]], entesos en térmens de funcions d'ona. La [[equació de Schrödinger]] eixercix el paper en la mecànica quàntica que les [[lleis de Newton]] i la [[conservació de l'energia]] fan en la mecànica clàssica. És a dir, la predicció del comportament futur d'un sistema dinàmic, i és una equació d'ona en térmens d'una [[funció d'ona]] la que preveu analíticament la provabilitat precisa dels acontenyiments o resultats.
  
Segons les teories anteriors de la física clàssica, l'energia es tractava únicament com un fenomen continu, en tant que la matèria se supon que ocupa una regió molt concreta del [[espai]] i que es mou de manera contínua. Segons la teoria quàntica, l'energia s'emet i s'absorbix en cantitats discretes i minúscules. Un paquet individual d'energia, nomenat quant, en algunes situacions es comporta com una [[partícula subatòmica|partícula]] de matèria. D'atra banda, es va trobar que les partícules exponen algunes propietats ondulatòries quan estan en moviment i ya no són vistes com localisades en una regió determinada sino més aïna esteses en certa manera. La llum o una atra radiació emesa o absorbida per un [[àtom]] a soles té certes [[freqüència]]s (o [[llongitut d'ona|llongituts d'ona]]), com pot vore's en la [[llínea espectral|línea de l'espectre]] associat al [[element químic]] representat per tal àtom. La teoria quàntica demostra que tals freqüències corresponen a nivells definits dels quants de llum, o [[fotó|fotons]], i és el resultat del fet que els electrons de l'àtom a soles poden tindre certs valors d'energia permesos. Quan un [[electró]] passa d'un nivell a permés a un atre, una cantitat d'energia és emesa o absorbida la freqüència de la qual és directament proporcional a la diferència d'energia entre els dos nivells.
+
Segons les teories anteriors de la física clàssica, l'energia es tractava únicament com un fenomen continu, en tant que la matèria se supon que ocupa una regió molt concreta del [[espai]] i que es mou de manera contínua. Segons la teoria quàntica, l'energia s'emet i s'absorbix en cantitats discretes i minúscules. Un paquet individual d'energia, cridat quant, en algunes situacions es comporta com una [[partícula subatòmica|partícula]] de matèria. D'atra banda, es va trobar que les partícules exponen algunes propietats ondulatòries quan estan en moviment i ya no són vistes com localisades en una regió determinada sino més aïna esteses en certa manera. La llum o una atra radiació emesa o absorbida per un [[àtom]] a soles té certes [[freqüència]]s (o [[llongitut d'ona|llongituts d'ona]]), com pot vore's en la [[llínea espectral|línea de l'espectre]] associat al [[element químic]] representat per tal àtom. La teoria quàntica demostra que tals freqüències corresponen a nivells definits dels quants de llum, o [[fotó|fotons]], i és el resultat del fet que els electrons de l'àtom a soles poden tindre certs valors d'energia permesos. Quan un [[electró]] passa d'un nivell a permés a un atre, una cantitat d'energia és emesa o absorbida la freqüència de la qual és directament proporcional a la diferència d'energia entre els dos nivells.
  
 
[[Archiu:3D Wavefunction (2,2,2).gif|thumb|left|Esquema d'un orbital en dos dimensions.]]
 
[[Archiu:3D Wavefunction (2,2,2).gif|thumb|left|Esquema d'un orbital en dos dimensions.]]
Llínea 126: Llínea 126:
 
=== Física de partícules o d'altes energies ===
 
=== Física de partícules o d'altes energies ===
 
{{AP|Física de partícules}}
 
{{AP|Física de partícules}}
[[File:Beta decay artistic.svg|thumb|left|Ilustració d'una [[desintegració beta]]]]
+
[[Image:Alphadecay.jpg|thumb|left|Ilustració d'una [[desintegració alfa]].]]
 
La física de partícules és la branca de la física que estudia els components elementals de la matèria i les interaccions entre ells com si estes foren partícules. Es la flama també ''física d'altes energies'' puix moltes de les partícules elementals no es troben en la naturalea i cal crear-les en colisions d'alta energia entre atres partícules, com es fa en els [[accelerador de partícules|acceleradors de partícules]]. Els principals centres d'estudi sobre partícules són el Laboratori Nacional Fermi o [[Fermilab]] en [[Estats Units]] i el Centre Europeu per a la Investigació Nuclear o [[CERN]] en la frontera entre [[Suïssa]] i [[França]]. En estos laboratoris lo que es conseguix és obtindre energies semblants a les que se creu que varen existir en el [[Big Bang]] i aixina s'intenta tindre cada vegada més proves del [[orige de l'univers]].
 
La física de partícules és la branca de la física que estudia els components elementals de la matèria i les interaccions entre ells com si estes foren partícules. Es la flama també ''física d'altes energies'' puix moltes de les partícules elementals no es troben en la naturalea i cal crear-les en colisions d'alta energia entre atres partícules, com es fa en els [[accelerador de partícules|acceleradors de partícules]]. Els principals centres d'estudi sobre partícules són el Laboratori Nacional Fermi o [[Fermilab]] en [[Estats Units]] i el Centre Europeu per a la Investigació Nuclear o [[CERN]] en la frontera entre [[Suïssa]] i [[França]]. En estos laboratoris lo que es conseguix és obtindre energies semblants a les que se creu que varen existir en el [[Big Bang]] i aixina s'intenta tindre cada vegada més proves del [[orige de l'univers]].
  
En l'actualitat, les partícules elementals es classifiquen seguint el nomenat [[Model Estàndart]] en dos grans grups: [[Bosó|bosons]] i [[Fermió|fermions]]. Els bosons són les partícules que interactuen en la matèria i els fermions són les partícules constituents de la matèria. En el model estàndart s'explica com les [[interaccions fonamentals]] en forma de partícules (bosons) interactuen en les partícules de matèria (fermions). Aixina, el [[electromagnetisme]] té la seua partícula nomenada  [[fotó]], la interacció nuclear forta té al [[gluó]], la interacció nuclear dèbil als [[bosons W i Z]] i la gravetat a una partícula encara hipotètica nomenada [[gravitó]]. Entre els fermions hi ha més varietat, es troben dos tipos: els [[leptó|leptons]] i els [[quark]]s. En conjunt, el model estàndart conté 24 partícules fonamentals que constituïxen la matèria (12 parells de partícules/antipartícules) junt en 3 famílies de [[bosó de gauge|bosons de gauge]] responsables de transportar les interaccions.
+
En l'actualitat, les partícules elementals es classifiquen seguint el cridat [[Model Estàndart]] en dos grans grups: [[Bosó|bosons]] i [[Fermió|fermions]]. Els bosons són les partícules que interactuen en la matèria i els fermions són les partícules constituents de la matèria. En el model estàndart s'explica com les [[interaccions fonamentals]] en forma de partícules (bosons) interactuen en les partícules de matèria (fermions). Aixina, el [[electromagnetisme]] té la seua partícula nomenada  [[fotó]], la interacció nuclear forta té al [[gluó]], la interacció nuclear dèbil als [[bosons W i Z]] i la gravetat a una partícula encara hipotètica nomenada [[gravitó]]. Entre els fermions hi ha més varietat, es troben dos tipos: els [[leptó|leptons]] i els [[quark]]s. En conjunt, el model estàndart conté 24 partícules fonamentals que constituïxen la matèria (12 parells de partícules/antipartícules) junt en 3 famílies de [[bosó de gauge|bosons de gauge]] responsables de transportar les interaccions.
  
 
=== Astrofísica ===
 
=== Astrofísica ===
Llínea 188: Llínea 188:
  
 
{{traduït de|es|Física}}
 
{{traduït de|es|Física}}
 
{{Llista artículs destacats}}
 
  
 
[[Categoria:Física| ]]
 
[[Categoria:Física| ]]

Per a editar esta pàgina, per favor respon a la pregunta que apareix més avall (més informació):

Cancelar Ajuda d'edició (s'obri en una finestra nova)


Advertència sobre drets d'autor

Totes les contribucions a Proyecte se publiquen baix la Llicència de documentació lliure GNU. Al contribuir, acceptes que atres persones distribuïxquen i modifiquen lliurement les teues aportacions. Si això no és lo que desiges, no poses les teues contribucions ací.

Ademés, al publicar el teu treball nos assegures que estàs llegalment autorisat a dispondre d'eixe text, ya siga perque eres el titular dels drets d'autor o per haver-lo obtingut d'una font baix una llicència compatible o en el domini públic. Recorda que l'immensa majoria del contingut disponible en internet no complix estos requisits; llig Proyecte:Drets d'autor per a més detalls.

¡No utilises sense permís escrits en drets d'autor!