Canvis

Anar a la navegació Anar a la busca
No hi ha canvi en el tamany ,  15:30 21 gin 2016
m
sense resum d'edició
Llínea 17: Llínea 17:  
</gallery> </center>
 
</gallery> </center>
   −
== El segle XVIII: Termodinàmica i òptica ==
+
== El sigle XVIII: Termodinàmica i òptica ==
   −
A partir del [[segle XVIII]] [[Robert Boyle|Boyle]], [[Thomas Young|Young]] i atres varen desenrollar la [[termodinàmica]]. L'any [[1733]] [[Daniel Bernoulli|Bernoulli]] va usar arguments estadístics, juntament en la [[mecànica]] clàssica, per extraure resultats de la [[termodinàmica]], iniciant la [[mecànica estadística]]. L'any [[1798]] [[Benjamin Thompson|Thompson]] va demostrar la conversió del treball mecànic en [[calor]] i el [[1847]] [[James Prescott Joule|Joule]] va formular la llei de conservació de l'[[energia]].
+
A partir del [[sigle XVIII]] [[Robert Boyle|Boyle]], [[Thomas Young|Young]] i atres varen desenrollar la [[termodinàmica]]. L'any [[1733]] [[Daniel Bernoulli|Bernoulli]] va usar arguments estadístics, juntament en la [[mecànica]] clàssica, per extraure resultats de la [[termodinàmica]], iniciant la [[mecànica estadística]]. L'any [[1798]] [[Benjamin Thompson|Thompson]] va demostrar la conversió del treball mecànic en [[calor]] i el [[1847]] [[James Prescott Joule|Joule]] va formular la llei de conservació de l'[[energia]].
    
En el camp de l'[[òptica]] el segle va començar en la teoria corpuscular de la llum de [[Isaac Newton|Newton]] exposta en la seua famosa obra '' [[Opticks]] ''. Encara que les lleis bàsiques de l'òptica geomètrica havien estat descobertes algunes décades abans el segle XVIII va ser ric en avanços tècnics en este camp produint les primeres lents acromàtiques, mesurant-se per primera vegada la [[velocitat de la llum]] i descobrint la naturalea espectral de la llum. El segle va concloure en el célebre [[experiment de Young]] de [[1801]] en el qual es posava de manifest la [[Interferència òptica|interferència]] de la llum demostrant la naturalea ondulatòria d'esta.
 
En el camp de l'[[òptica]] el segle va començar en la teoria corpuscular de la llum de [[Isaac Newton|Newton]] exposta en la seua famosa obra '' [[Opticks]] ''. Encara que les lleis bàsiques de l'òptica geomètrica havien estat descobertes algunes décades abans el segle XVIII va ser ric en avanços tècnics en este camp produint les primeres lents acromàtiques, mesurant-se per primera vegada la [[velocitat de la llum]] i descobrint la naturalea espectral de la llum. El segle va concloure en el célebre [[experiment de Young]] de [[1801]] en el qual es posava de manifest la [[Interferència òptica|interferència]] de la llum demostrant la naturalea ondulatòria d'esta.
   −
== El segle XIX: Electromagnetisme i l'estructura atòmica ==
+
== El sigle XIX: Electromagnetisme i l'estructura atòmica ==
La investigació física de la primera mitat del [[segle XIX]] va estar dominada per l'estudi dels fenòmens de l'[[electricitat]] i el [[magnetisme]]. [[Coulomb]], [[Luigi Galvani]], [[Michael Faraday|Faraday]], [[Georg Simon Ohm|Ohm]] i molts atres físics famosos estudiar els fenòmens dispars i contraintuitivos que s'associen a este camp. L'any [[1855]] [[James Clerk Maxwell|Maxwell]] va unificar les lleis conegudes sobre el comportament de l'electricitat i el magnetisme en una sola teoria en un marc matemàtic comú mostrant la natura unida del [[electromagnetisme]]. Els treballs de Maxwell en l'electromagnetisme es consideren a sovint equiparables als descobriments de Newton sobre la gravitació universal i es resumixen en les conegudes, [[equacions de Maxwell]], un conjunt de quatre equacions capaç de predir i explicar tots els fenòmens electromagnètics clàssics . Una de les prediccions d'esta teoria era que la [[llum]] és una [[radiació electromagnètica|ona electromagnètica]]. Este descobriment de Maxwell proporcionaria la possibilitat del desenroll de la [[ràdio (comunicacions)]] unes décades més tart per [[Heinrich Rudolf Hertz|Heinrich Hertz]] l'any [[1888]].
+
La investigació física de la primera mitat del [[sigle XIX]] va estar dominada per l'estudi dels fenòmens de l'[[electricitat]] i el [[magnetisme]]. [[Coulomb]], [[Luigi Galvani]], [[Michael Faraday|Faraday]], [[Georg Simon Ohm|Ohm]] i molts atres físics famosos estudiar els fenòmens dispars i contraintuitivos que s'associen a este camp. L'any [[1855]] [[James Clerk Maxwell|Maxwell]] va unificar les lleis conegudes sobre el comportament de l'electricitat i el magnetisme en una sola teoria en un marc matemàtic comú mostrant la natura unida del [[electromagnetisme]]. Els treballs de Maxwell en l'electromagnetisme es consideren a sovint equiparables als descobriments de Newton sobre la gravitació universal i es resumixen en les conegudes, [[equacions de Maxwell]], un conjunt de quatre equacions capaç de predir i explicar tots els fenòmens electromagnètics clàssics . Una de les prediccions d'esta teoria era que la [[llum]] és una [[radiació electromagnètica|ona electromagnètica]]. Este descobriment de Maxwell proporcionaria la possibilitat del desenroll de la [[ràdio (comunicacions)]] unes décades més tart per [[Heinrich Rudolf Hertz|Heinrich Hertz]] l'any [[1888]].
    
En l'any [[1895]] [[Wilhelm Röntgen|Roentgen]] va descobrir els [[raigs X]], ones electromagnètiques de [[freqüència|freqüències]] molt altes. Quasi simultàneament, [[Henri Becquerel]] descobria la [[radioactivitat]] l'any [[1896]]. Este camp es va desenrollar ràpidament en els treballs posteriors de [[Pierre Curie]], [[Marie Curie]] i molts atres, donant inici a la [[física nuclear]] i al començament de l'estructura microscòpica de la matèria.
 
En l'any [[1895]] [[Wilhelm Röntgen|Roentgen]] va descobrir els [[raigs X]], ones electromagnètiques de [[freqüència|freqüències]] molt altes. Quasi simultàneament, [[Henri Becquerel]] descobria la [[radioactivitat]] l'any [[1896]]. Este camp es va desenrollar ràpidament en els treballs posteriors de [[Pierre Curie]], [[Marie Curie]] i molts atres, donant inici a la [[física nuclear]] i al començament de l'estructura microscòpica de la matèria.
Llínea 30: Llínea 30:  
En l'any [[1897]] [[Joseph John Thomson|Thomson]] va descobrir el [[electró]], la partícula elemental que transporta la corrent en els circuits elèctrics proponent l'any [[1904]] un primer model simplificat de l'[[àtom]].
 
En l'any [[1897]] [[Joseph John Thomson|Thomson]] va descobrir el [[electró]], la partícula elemental que transporta la corrent en els circuits elèctrics proponent l'any [[1904]] un primer model simplificat de l'[[àtom]].
   −
== El segle XX: La segona revolució de la física ==
+
== El sigle XX: La segona revolució de la física ==
El [[segle XX]] va estar marcat pel desenroll de la física com ciència capaç de promoure el desenroll tecnològic. A principis d'este segle els físics consideraven tindre una visió quasi completa de la naturalea. No obstant això aviat es varen produir dos revolucions conceptuals de gran calat: El desenroll de la [[teoria de la relativitat]] i el començament de la [[mecànica quàntica]].
+
El [[sigle XX]] va estar marcat pel desenroll de la física com ciència capaç de promoure el desenroll tecnològic. A principis d'este segle els físics consideraven tindre una visió quasi completa de la naturalea. No obstant això aviat es varen produir dos revolucions conceptuals de gran calat: El desenroll de la [[teoria de la relativitat]] i el començament de la [[mecànica quàntica]].
    
En l'any [[1905]] [[Albert Einstein]], va formular la teoria de la [[relativitat especial]], en la qual l'[[espai]] i el [[temps]] s'unifiquen en una sola entitat, l'[[espai-temps]]. La relativitat formula equacions diferents per a la transformació de moviments quan s'observen des de diferents sistemes de referència inercials a aquelles donades per la mecànica clàssica. Les dos teories coincidixen a velocitats chicotetes en relació a la velocitat de la llum. En l'any [[1915]] es va estendre la teoria especial de la relativitat per a explicar la gravetat, formulant la [[relativitat general|teoria general de la relativitat]], la qual substituïx la llei de la gravitació de Newton.
 
En l'any [[1905]] [[Albert Einstein]], va formular la teoria de la [[relativitat especial]], en la qual l'[[espai]] i el [[temps]] s'unifiquen en una sola entitat, l'[[espai-temps]]. La relativitat formula equacions diferents per a la transformació de moviments quan s'observen des de diferents sistemes de referència inercials a aquelles donades per la mecànica clàssica. Les dos teories coincidixen a velocitats chicotetes en relació a la velocitat de la llum. En l'any [[1915]] es va estendre la teoria especial de la relativitat per a explicar la gravetat, formulant la [[relativitat general|teoria general de la relativitat]], la qual substituïx la llei de la gravitació de Newton.
Llínea 37: Llínea 37:  
En l'any [[1911]] [[Ernest Rutherford|Rutherford]] va deduir l'existència d'un núcleu atòmic carregat positivament a partir d'experiències de dispersió de partícules. Als components de càrrega positiva d'este núcleu se'ls va nomenar [[protó|protons]]. Els [[neutró|neutrons]], que també formen part del núcleu pero no tenen càrrega elèctrica, els va descobrir [[James Chadwick|Chadwick]] l'any [[1932]].
 
En l'any [[1911]] [[Ernest Rutherford|Rutherford]] va deduir l'existència d'un núcleu atòmic carregat positivament a partir d'experiències de dispersió de partícules. Als components de càrrega positiva d'este núcleu se'ls va nomenar [[protó|protons]]. Els [[neutró|neutrons]], que també formen part del núcleu pero no tenen càrrega elèctrica, els va descobrir [[James Chadwick|Chadwick]] l'any [[1932]].
   −
En els primers anys del [[segle XX]] [[Max Planck|Planck]], [[Albert Einstein|Einstein]], [[Niels Bohr|Bohr]] i atres van desenrollar la teoria [[quàntica]] per tal de explicar resultats experimentals anòmals sobre la radiació dels cossos. En esta teoria, els nivells possibles d'energia passen a ser discrets. En [[1925]] [[Werner Heisenberg|Heisenberg]] i en [[1926]] [[Erwin Schrödinger|Schrödinger]] i [[Paul Dirac|Dirac]] formularen la [[mecànica quàntica]], en la qual expliquen les teories quàntiques precedents. En la mecànica quàntica, els resultats de les mesures físiques són [[provabilitat|provabilístics]], la teoria quàntica descriu el càlcul d'estes provabilitats.
+
En els primers anys del [[sigle XX]] [[Max Planck|Planck]], [[Albert Einstein|Einstein]], [[Niels Bohr|Bohr]] i atres van desenrollar la teoria [[quàntica]] per tal de explicar resultats experimentals anòmals sobre la radiació dels cossos. En esta teoria, els nivells possibles d'energia passen a ser discrets. En [[1925]] [[Werner Heisenberg|Heisenberg]] i en [[1926]] [[Erwin Schrödinger|Schrödinger]] i [[Paul Dirac|Dirac]] formularen la [[mecànica quàntica]], en la qual expliquen les teories quàntiques precedents. En la mecànica quàntica, els resultats de les mesures físiques són [[provabilitat|provabilístics]], la teoria quàntica descriu el càlcul d'estes provabilitats.
    
La mecànica quàntica va suministrar les ferramentes teòriques per a la [[física de la matèria condensada]], la qual estudia el comportament dels [[sòlit]]s i els [[líquit]]s, incloent fenòmens com ara [[estructura cristalina]] , [[semiconductor|semiconductivitat]] i [[superconductor|superconductivitat]]. Entre els pioners de la física de la matèria condensada s'inclou [[Felix Bloch|Bloch]], que va desenrollar una descripció mecano-quàntica del comportament dels electrons en les estructures cristal ([[1928]]).
 
La mecànica quàntica va suministrar les ferramentes teòriques per a la [[física de la matèria condensada]], la qual estudia el comportament dels [[sòlit]]s i els [[líquit]]s, incloent fenòmens com ara [[estructura cristalina]] , [[semiconductor|semiconductivitat]] i [[superconductor|superconductivitat]]. Entre els pioners de la física de la matèria condensada s'inclou [[Felix Bloch|Bloch]], que va desenrollar una descripció mecano-quàntica del comportament dels electrons en les estructures cristal ([[1928]]).
Llínea 45: Llínea 45:  
La teoria quàntica de camps suministrar les bases per al desenroll de la [[física de partícules]], la qual estudia les forces fonamentals i les partícules elementals. En [[1954]] [[Yang Chen Ning|Yang]] i [[Robert Mills|Mills]] van desenrollar les bases del [[model estàndart de física de partícules]]. Este model es va completar en els [[anys 1970]] i en ell es descriuen quasi totes les partícules elementals observades.
 
La teoria quàntica de camps suministrar les bases per al desenroll de la [[física de partícules]], la qual estudia les forces fonamentals i les partícules elementals. En [[1954]] [[Yang Chen Ning|Yang]] i [[Robert Mills|Mills]] van desenrollar les bases del [[model estàndart de física de partícules]]. Este model es va completar en els [[anys 1970]] i en ell es descriuen quasi totes les partícules elementals observades.
   −
== La física del segle XXI ==
+
== La física del sigle XXI ==
La física seguix enfrontant-se a grans reptes, tant de caràcter pràctic com teòric, al començament del [[segle XXI]]. L'estudi dels [[sistema complex|sistemes complexos]] dominats per sistemes d'equacions no llineals, tal com la [[meteorologia]] o les propietats quàntiques dels materials que han possibilitat el desenroll de nous materials en propietats sorprenents. A nivell teòric l'[[astrofísica]] oferix una visió del món en numeroses preguntes obertes en tots els seus fronts, des de la [[cosmologia]] fins a la [[formació planetaria]]. La física teòrica continua els seus intents de trobar una teoria física capaç d'unificar totes les forces en un únic formulisme en el que seria una [[teoria del tot]]. Entre les teories candidates hem de citar la [[teoria de supercordes]].
+
La física seguix enfrontant-se a grans reptes, tant de caràcter pràctic com teòric, al començament del [[sigle XXI]]. L'estudi dels [[sistema complex|sistemes complexos]] dominats per sistemes d'equacions no llineals, tal com la [[meteorologia]] o les propietats quàntiques dels materials que han possibilitat el desenroll de nous materials en propietats sorprenents. A nivell teòric l'[[astrofísica]] oferix una visió del món en numeroses preguntes obertes en tots els seus fronts, des de la [[cosmologia]] fins a la [[formació planetaria]]. La física teòrica continua els seus intents de trobar una teoria física capaç d'unificar totes les forces en un únic formulisme en el que seria una [[teoria del tot]]. Entre les teories candidates hem de citar la [[teoria de supercordes]].
    
== Vore també ==
 
== Vore també ==
8229

edicions

Menú de navegació