Canvis

Anar a la navegació Anar a la busca
2 bytes afegits ,  11:09 12 abr 2016
m
Text reemplaça - 'simbol' a 'símbol'
Llínea 17: Llínea 17:  
Els matematics aleixandrins [[Heró]] i [[Diofante]] continuaren en la tradicio d'[[Egipte]] i [[Babilonia]], encara que el llibre Les aritmetiques de Diofante es de prou mes nivell i presenta moltes solucions sorprenents per a equacions indeterminades dificils. Esta antiga sabiduria sobre resolucio d'equacions trobà, a la seua volta, acollida en el mon islamic, a on se li cridà “ciencia de reduccio i equilibri”.
 
Els matematics aleixandrins [[Heró]] i [[Diofante]] continuaren en la tradicio d'[[Egipte]] i [[Babilonia]], encara que el llibre Les aritmetiques de Diofante es de prou mes nivell i presenta moltes solucions sorprenents per a equacions indeterminades dificils. Esta antiga sabiduria sobre resolucio d'equacions trobà, a la seua volta, acollida en el mon islamic, a on se li cridà “ciencia de reduccio i equilibri”.
   −
En les civilisacions antigues s'escrivien les expressions algebraiques utilisant abreviatures soles ocasionalment; no obstant, en l'edat mija, els matematics null foren capaços de descriure qualsevol potencia de l'incognita X, i desenrollaren l'algebra fonamental dels [[polinomis]], encara que sense usar els simbols moderns. Esta algebra incloïa multiplicar, dividir i extraure arrels quadrades de polinomis, aixina com el coneiximent de la [[teorema del binomi]]. El matematic, poeta i astronom persa [[Omar Khayyam]] mostrà com expressar les arrels d'equacions cubiques utilisant els segments obtinguts per interseccio de seccions coniques, encara que no fon capaç de trobar una formula per a les arrels.
+
En les civilisacions antigues s'escrivien les expressions algebraiques utilisant abreviatures soles ocasionalment; no obstant, en l'edat mija, els matematics null foren capaços de descriure qualsevol potencia de l'incognita X, i desenrollaren l'algebra fonamental dels [[polinomis]], encara que sense usar els símbols moderns. Esta algebra incloïa multiplicar, dividir i extraure arrels quadrades de polinomis, aixina com el coneiximent de la [[teorema del binomi]]. El matematic, poeta i astronom persa [[Omar Khayyam]] mostrà com expressar les arrels d'equacions cubiques utilisant els segments obtinguts per interseccio de seccions coniques, encara que no fon capaç de trobar una formula per a les arrels.
   −
Un alvanç important en l'algebra fon l'introduccio, en el sigle XVI, de simbols per a les incognites i per a les operacions i potencies algebraiques. Degut a este alvanç, el Llibre III de la Geometria (1637), escrit pel matematic i filosof frances [[René Descartes]] se sembla prou a un text modern d'algebra. No obstant, la contribució més important de Descarts a les matematiques fon el descobriment de la geometria analitica, que reduix la resolucio de problemes geometriques a la resolucio de problemes algebraiques. El seu llibre de geometria conte també els fonaments d'un curs de teoria d'equacions, incloent lo que el propi Descarts cridà la regla dels signes per a contar el numero d'arrels verdaderes (positives) i falses (negatives) d'una equacio. Durant el sigle XVIII se continuà treballant en la teoria d'equacions i en [[1799]] el matematic alema [[Carl Friedrich Gauss]] publicà la demostracio de que tota equacio polinòmica te al menys una arrel en el pla complex.
+
Un alvanç important en l'algebra fon l'introduccio, en el sigle XVI, de símbols per a les incognites i per a les operacions i potencies algebraiques. Degut a este alvanç, el Llibre III de la Geometria (1637), escrit pel matematic i filosof frances [[René Descartes]] se sembla prou a un text modern d'algebra. No obstant, la contribució més important de Descarts a les matematiques fon el descobriment de la geometria analitica, que reduix la resolucio de problemes geometriques a la resolucio de problemes algebraiques. El seu llibre de geometria conte també els fonaments d'un curs de teoria d'equacions, incloent lo que el propi Descarts cridà la regla dels signes per a contar el numero d'arrels verdaderes (positives) i falses (negatives) d'una equacio. Durant el sigle XVIII se continuà treballant en la teoria d'equacions i en [[1799]] el matematic alema [[Carl Friedrich Gauss]] publicà la demostracio de que tota equacio polinòmica te al menys una arrel en el pla complex.
    
En els tempss de Gauss, l'algebra havia entrat en la seua etapa moderna. El foc d'atencio se traslladà de les equacions polinòmiques a l'estudie de l'estructura de sistemes matematiques abstractes, qui axiomes estaven basats en el comportament d'objectes matematics, com els numeros complexos, que els matematics havien trobat a l'estudiar les equacions polinòmiques. Les quaternes foren descobertes pel matematic i astronom irlandes [[William Rowan Hamilton]], qui desenrollà l'aritmetica dels numeros complexos per a les quaternes.
 
En els tempss de Gauss, l'algebra havia entrat en la seua etapa moderna. El foc d'atencio se traslladà de les equacions polinòmiques a l'estudie de l'estructura de sistemes matematiques abstractes, qui axiomes estaven basats en el comportament d'objectes matematics, com els numeros complexos, que els matematics havien trobat a l'estudiar les equacions polinòmiques. Les quaternes foren descobertes pel matematic i astronom irlandes [[William Rowan Hamilton]], qui desenrollà l'aritmetica dels numeros complexos per a les quaternes.
110 425

edicions

Menú de navegació