| Llínea 20: |
Llínea 20: |
| | ''Anàlisis'' es referix a l'acció de descompondre alguna cosa complex en parts simples o identificar en eixe alguna cosa complex les parts més simples que ho formen. Com s'ha vist, hi ha una base física per a modelar la llum, el sò o les ones de radi en superposició de diferents freqüències. Un procés que quantifique les diverses intensitats de cada freqüència es diu '''anàlisis espectral'''. | | ''Anàlisis'' es referix a l'acció de descompondre alguna cosa complex en parts simples o identificar en eixe alguna cosa complex les parts més simples que ho formen. Com s'ha vist, hi ha una base física per a modelar la llum, el sò o les ones de radi en superposició de diferents freqüències. Un procés que quantifique les diverses intensitats de cada freqüència es diu '''anàlisis espectral'''. |
| | | | |
| − | Matemàticament l'anàlisis espectral està relacionat en una ferramenta anomenada [[transformada de Fourier]] o anàlisis de Fourier. Donada una senyal o fenomen ondultori d'amplitut <math>scriptstyle s(t)</math> esta es vaig poder escriure matemàticament com la següent combinació llineal generalisada: | + | Matemàticament l'anàlisis espectral està relacionat en una ferramenta nomenada [[transformada de Fourier]] o anàlisis de Fourier. Donada una senyal o fenomen ondultori d'amplitut <math>scriptstyle s(t)</math> esta es vaig poder escriure matemàticament com la següent combinació llineal generalisada: |
| | | | |
| | {{equació| | | {{equació| |
| Llínea 27: |
Llínea 27: |
| | | | |
| | | | |
| − | És dir, la senyal pot ser concebuda com la transformada de Fourier de l'amplitut <math>scriptstyle A=A(nu)</math>. Eixe anàlisis pot portar-se a terme per a menuts intervals de temps, o menys freqüentment per a intervals llarcs, o fins i tot pot realisar-se l'anàlisis espectral d'una funció determinista (tal com <math>\begin{matrix} \frac{\sin (t) }{t} \end{matrix}\,</math>). | + | És dir, la senyal pot ser concebuda com la transformada de Fourier de l'amplitut <math>scriptstyle A=A(nu)</math>. Eixe anàlisis pot portar-se a terme per a chicotets intervals de temps, o menys freqüentment per a intervals llarcs, o inclús pot realisar-se l'anàlisis espectral d'una funció determinista (tal com <math>\begin{matrix} \frac{\sin (t) }{t} \end{matrix}\,</math>). |
| − | Ademés la [[transformada de Fourier]] d'una funció no solament permet fer una descomposició espectral dels formants d'una ona o senyal oscilatòria, sino que en l'espectre generat per l'anàlisis de Fourier fins i tot es pot reconstruir (''sintetisar'') la funció original per mig de la transformada inversa. Per a poder fer això, la transformada no solament conté informació sobre l'intensitat de determinada freqüència, sino també sobre la seua [[fase (ona)|fase]]. Esta informació es pot representar com un vector bidimensional o com un número complexo. En les representacions gràfiques, freqüentment només es representa el mòdul a la garrofa d'eixe número, i el gràfic resultant es coneix com a '''espectre de potència''' o '''densitat espectral de potència''' (SP): | + | Ademés la [[transformada de Fourier]] d'una funció no solament permet fer una descomposició espectral dels formants d'una ona o senyal oscilatòria, sino que en l'espectre generat per l'anàlisis de Fourier inclús es pot reconstruir (''sintetisar'') la funció original per mig de la transformada inversa. Per a poder fer això, la transformada no solament conté informació sobre l'intensitat de determinada freqüència, sino també sobre la seua [[fase (ona)|fase]]. Esta informació es pot representar com un vector bidimensional o com un número complexo. En les representacions gràfiques, freqüentment a soles es representa el mòdul a la garrofa d'eixe número, i el gràfic resultant es coneix com a '''espectre de potència''' o '''densitat espectral de potència''' (SP): |
| | | | |
| | {{equació| | | {{equació| |
| Llínea 34: |
Llínea 34: |
| | ||left}} | | ||left}} |
| | | | |
| − | És important recordar que la transformada de Fourier d'una ona aleatòria, millor dit estocàstica, és també aleatòria. Un eixemple d'este tipo d'ona és el soroll ambiental. Per tant per a representar una ona d'eixe tipo es requerix cert tipo de *promediado per a representar adequadament la distribució freqüencial. Per a senyals estocàstiques digitalisades d'eixe tipo s'ampra en freqüència la [[transformada de Fourier discreta]]. Quan el resultat d'eixe anàlisis espectral és una llínea plana la senyal que va generar l'espectre es denomina [[soroll blanc]]. | + | És important recordar que la transformada de Fourier d'una ona aleatòria, millor dit estocàstica, és també aleatòria. Un eixemple d'este tipo d'ona és el soroll ambiental. Per tant per a representar una ona d'eixe tipo es requerix cert tipo de *promediado per a representar adequadament la distribució freqüencial. Per a senyals estocàstiques digitalisades d'eixe tipo s'ampra en freqüència la [[transformada de Fourier discreta]]. Quan el resultat d'eixe anàlisis espectral és una llínea plana la senyal que va generar l'espectre es denomina [[soroll blanc]]. |
| | | | |
| | == Vore també == | | == Vore també == |